
Journal of Mathematical Chemistry Vol. 32, No. 4, November 2002 (© 2002)

Schrödinger equation solutions for the central field
power potential energy

II. V (r) = −V0(r/a0)
2ν−2, 0 � ν � 1, the bound states
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The bound states of the generalized Schrödinger equation system with radial potential
energyV (r) = −V0(r/a0)

2ν−2, 0 � ν � 1, are described. The solutions of the differential
equation are related to the functions for the bound state problem withν � 1. The Green’s
function is constructed as well as its first iteration, the traces of both functions are calculated,
and an upper and lower bound for the ground state is established. A WKB-like approximate
solution for the eigenvalues and eigenfunctions is derived.
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1. Introduction

The Schrödinger differential equation system for the bound states arising from the
potential energyV (r) = −V0(r/a0)

2ν−2, 0 � ν � 1, r ∈ [0,∞), is

d2

dy2
T q(ν)
σ (κ; z)+

[
−κ2+ z2ν−2− σ 2− 1/4

z2

]
T (ν)
σ (κ; z) = 0, z ∈ [0,∞),

(1.1)
T (ν)
σ (κ;0) = 0 and T (ν)

σ (κ;∞) = 0,

whereT (r) = rR(r), z = αr, (αa0)
2ν = (2µa2

0/h̄
2)V0, andκ2 = (−ε/V0)(αa0)

2ν−2.
R(r) is the central field radial function wherer is the distance between the two particles,
µ is the reduced mass of the two-particle system,ε is the energy of the stationary state
and it is less than zero,V0 is an arbitrary constant to set the potential energy scale, and
a0 may be taken as the Bohr radius or other appropriate distance for the problem under
consideration. Althoughσ may take any value,σ 2 � 1/4 gives a pseudo-potential
energy in equation (1.1) which guarantees the existence of quantized eigenvalues. When
σ = l + 1/2, wherel is the orbital angular momentum quantum number, the quantum
problem with spherical symmetry is obtained; whenσ = m, wherem is the magnetic
quantum number, equation (1.1) becomes the two-dimensional quantum problem with
circular symmetry. (In this case,T (z) = z1/2R(z), R(z) is the radial function.) Letting
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σ 2 = 1/4 reduces equation (1.1) to the one-dimensional quantum problem, provided
z ∈ (−∞,∞) and the potential energy is expressed in terms of the absolute value ofz.

Without regard for compatibility with the boundary conditions, equation (1.1) can
be solved in terms of well-known functions forν = 0, ν = 1/2, andν = 1:

(a) ν = 0:

T (0)
σ (κ; z) = z1/2I±

√
σ2−1

(κz) or T (0)
σ (κ; z) = z1/2K√

σ2−1
(κz).

The solutions are not quantized.

(b) ν = 1/2:

T (1/2)
σ (κn; z) = zσ+1/2 e−κnzL(2σ)

n (2κnz),

where

κn = 1

2n + 2σ + 1
, n ∈ {0} ∪N;

L(2σ)
n (x) are associated Laguerre polynomials andT (1/2)

σ (κn; z) are unnormal-
ized eigenfunctions which satisfy the boundary conditions.

(c) ν = 1:
(1) κ2 > 1:

T (1)
σ (κ; z) = z1/2I±σ

(√
κ2− 1z

)
or T (1)

σ (κ; z) = z1/2Kσ

(√
κ2− 1z

)
,

(2) κ2 = 1:

T (1)
σ (κ; z) = z±σ+1/2,

(3) κ2 < 1:

T (1)
σ (κ; z) = z1/2J±σ

(√
1− κ2z

)
.

The solutions are not quantized.

By lettingT (z) = z(1−ν)/2U(z) and then changing the variable so thaty = (κz/ν)ν,
a more useful differential equation

d2

dy2
U(ν)
σ (κ; y)+

{
1

κ2νν2−2ν
− y2/ν−2−

[
(σ/ν)2− 1/4

y2

]}
U(ν)
σ (κ; y) = 0 (1.2)

is obtained. Equation (1.2) has the same form as equation (1.1) in [1], hereafter referred
to as paper I. The definitions and properties of mathematical functions in this paper are
taken from the same reference texts which were used in paper I. The remarks made there
apply to equation (1.2) once the parameters in paper I, equation (1.1), have been properly
transformed as follows:

λ→ 1

κνν1−ν , ν → 1

ν
, and σ → σ

ν
. (1.3)
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The general solutions of equation (1.1) can be written in terms of the solutions con-
structed in paper I (equation (3.5)), i.e.,

T (ν)
σ (κ; z) = CS(ν)σ

(
κ e(ν/2)(1−1/ν)π;eiπ/2νz

)
,

whereC is a constant, chosen so thatT (ν)
σ (κ; z) is a real function. In paper I, equa-

tion (3.5), λy is replaced by iκz andyν by izν . The transformation is also valid for
S
(ν)
−σ (λ; y). Similarly, for equation (1.2),

T (ν)
σ (κ; z) = Dz(1−ν)/2S(1/ν)σ/ν

(
1

κν1−ν ;
(
κ
z

ν

)ν)
.

Interestingly enough,S(z) takes the second form of the solution discussed in paper I
(equation (3.4)).

2. The Green’s function

The Green’s function can be constructed for equation (1.2) directly or by using the
transformations of (1.3). It is

0 � x � y <∞: H(x, y) = νx1/2Iσ
(
νx1/ν

)
y1/2Kσ

(
νy1/ν

)
,

0 � y � x <∞: H(x, y) = νx1/2Kσ

(
νx1/ν

)
y1/2Iσ

(
νy1/ν

)
,

(2.1)

where

U(x) = 1

κ2νν2−2ν

∫ ∞
0

H(x, y)U(y)dy. (2.2)

The trace of the Green’s function is∫ ∞
0

H(y, y)dy = ν2−2ν 1

4π1/2

&(σ + ν)&(ν)&(1/2− ν)

&(σ − ν + 1)
, 0 < ν <

1

2
. (2.3)

In terms of the eigenvalues, the trace equals

∫ ∞
0

H(y, y)dy =
∞∑
m=0

κ2ν
m ν2−2ν, (2.4)

and therefore,

T =
∞∑
m=0

κ2ν
m =

1

4π1/2

&(σ + ν)&(ν)&(1/2− ν)

&(σ − ν + 1)
. (2.5)
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It is possible to iterate the Green’s function one time using Meijer’s G-functions and,
from it, one obtains

T1=
∞∑
m=0

κ4ν
m

=A(σ, ν)

∞∑
m=0

(σ + 1/2)m(σ + ν)m(2σ + 2ν)m(2ν)m(σ + 2ν)m
(1)m(σ + 1)m(2σ + 1)m(σ + ν + 1)m(σ + 2ν + 1/2)m

, (2.6)

where

A(σ, ν) = &(σ + 1/2)&(σ + ν)&(2σ + 2ν)&(2ν)&(σ + 2ν)

4&(σ + 1)&(2σ + 1)&(σ + ν + 1)&(σ + 2ν + 1/2)

and 0< ν < 3/4. Becauseκ0 > κ1 > κ2 > · · · > κ∞ = 0, T andT1 provide upper
and lower bounds forκ0. Inspection of the infinite series definingT andT1 gives the
following inequalities: (

T1

T

)1/ν

< κ2
0 < T

1/2ν
1 < T 1/ν. (2.7)

Whenν = 1/2 in equation (2.6),

T1 =
∞∑
m=0

κ2
m =

∞∑
m=0

1

(2m+ 2σ + 1)2
, (2.8)

which is just the sum of the squared eigenvalues.

3. The variation of 1/(κ2νν2−2ν) with respect to ν

Taking the partial derivative of equation (1.2) with respect toν and integratingy
over[0,∞) whenU(y) is an eigenfunction, gives the equation

∂

∂ν

(
1

κ2νν2−2ν

)
+ 2

ν2

∫ ∞
0

y2/ν−2 ln(y)U
2
(y)dy + 2σ 2

ν3

∫ ∞
0

U
2
(y)

y2
dy = 0, (3.1)

whereU(y) is the normalized eigenfunction. Inspection of equation (3.1) shows that

lim
ν→0

∂

∂ν

(
1

κ2νν2−2ν

)
= −∞ and lim

ν→1

∂

∂ν

(
1

κ2νν2−2ν

)
= −∞.

Furthermore, it follows from equation (3.1) that

− ∂

∂ν

(
1

κ2νν2−2ν

)
− 2

ν2

∫ 1

0
y2/ν−2 ln(y)dy > 0

or

∂

∂ν

(
− 1

κ2νν2−2ν
+ 1

2/ν − 1

)
> 0, (3.2)
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therefore, the function inside the parenthesis is an increasing function ofν. Inspection
of equation (3.2) indicates

lim
ν→0

1

κ2νν2−2ν
= ∞ and lim

ν→1

1

κ2νν2−2ν
= 1. (3.3)

These results are valid for the eigenvaluesκm, m ∈ {0} ∪ N.

4. The modified WKB approximation

The discussion of (1.2) takes the same form as the discussion in paper I. Again
using the transformations (1.3), the appropriate equations for (1.2) are obtained. The
most important result is the approximation for the eigenvalues:

κ(ν, σ, n) =
[
&

(
1

2/ν−2 + 1
)
&

(
3
2

)
ν&

(
1

2/ν−2 + 3
2

) 1(
n+ σ

2ν + 1
2

)
π

]1−1/ν

, n ∈ {0}∪N, 0 < ν < 1.

(4.1)
The approximation is good provided that

[(σ/ν)2− 1/4]κ2ν/(1−ν)ν2

1/ν − 1
� 1. (4.2)

Whenν = 1/2, the approximation gives the correct value for the eigenvalue, i.e.

κ

(
1

2
, σ, n

)
= 1

2n + 2σ + 1
, n ∈ {0} ∪ N, (4.3)

which corresponds to the energy levels of the hydrogen-like atom.

5. Conclusions

This problem may be viewed as a special case of the problem discussed in paper I.
All of the general properties and analytical methods of the first paper may be used in
this paper once the proper transformations have been made. It is also possible to develop
the power series solutions for the unbound states of the problem in this paper. If the
general problems implied in the two papers are collected together in analogy to the
Bessel functions with which they are so intimately related, it would be appropriate to
choose the fundamental function definitions using paper I, equation (6.3). Then all other
solutions can be developed as special cases of those oscillating functions. Once the
new functions are better understood mathematically, a new set of quantum mechanical
problems becomes easier to discuss. The more general problem opened here extends in
interest beyond pertinent problems of quantum mechanics.
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